The minimal angle condition for quadrilateral finite elements of arbitrary degree
نویسندگان
چکیده
منابع مشابه
New Quadrilateral Mixed Finite Elements
In this paper, we introduce a new family of mixed finite element spaces of higher order (k ≥ 1) on general quadrilateral grids. A typical element has two fewer degrees of freedom than the well-known RaviartThomas finite element RT[k], yet enjoys an optimal-order approximation for the velocity in L 2-norm. The order of approximation in the divergence norm is one less than the velocity, as is com...
متن کاملQuadrilateral H(div) Finite Elements
We consider the approximation properties of quadrilateral finite element spaces of vector fields defined by the Piola transform, extending results previously obtained for scalar approximation. The finite element spaces are constructed starting with a given finite dimensional space of vector fields on a square reference element, which is then transformed to a space of vector fields on each conve...
متن کاملApproximation by quadrilateral finite elements
We consider the approximation properties of finite element spaces on quadrilateral meshes. The finite element spaces are constructed starting with a given finite dimensional space of functions on a square reference element, which is then transformed to a space of functions on each convex quadrilateral element via a bilinear isomorphism of the square onto the element. It is known that for affine...
متن کاملA Class of Nonconforming Quadrilateral Finite Elements for Incompressible Flow∗
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow. Beyond the previous research works [9, 8, 4], we propose a general strategy to construct the basis functions. Under several specific constraints, the optimal error estimates are obtained, i.e. the first order accuracy of the velocities in H-norm and the pressure ...
متن کاملParametric polynomial minimal surfaces of arbitrary degree
Weierstrass representation is a classical parameterization of minimal surfaces. However, two functions should be specified to construct the parametric form in Weierestrass representation. In this paper, we propose an explicit parametric form for a class of parametric polynomial minimal surfaces of arbitrary degree. It includes the classical Enneper surface for cubic case. The proposed minimal s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.11.041